News Release Header

 

NEWS RELEASE
For Immediate Release
March 20, 2019
Contact
Adam Lowenstein
Florida Tech News Bureau
adam@fit.edu or 321-674-8964

 

The impact of the bias field is reflected in the patterns that formed on these crystalline (red) and fluid (green) materials.

Scientists Discover New Field
Affecting Metals Solidification

‘Bias Field’ Could Lead to Process
Improvements, Stronger Alloys

MELBOURNE, FLA. — A fundamental discovery that alters our current understanding of how metals solidify and form crystalline patterns may help lead to better control of casting and welding processes. It also explains how snowflakes and many mineral patterns form naturally.

Reexamining data from his 20-year-old NASA experiment involving the repeated freezing and melting of high-purity materials in microgravity, Martin Glicksman, research professor in materials science and the Allen Henry Chair at Florida Institute of Technology, working with Kumar Ankit at the School of Matter, Transport and Energy at Arizona State University, discovered the way nature guides formation of complex patterns in materials that crystallize.

Glicksman discovered an energy field affecting all crystallizing substances, which he labeled the bias field that he believes is nature’s way of guiding cellular and branching dendritic microstructures that form during solidification of most metals and alloys.

“In the last phases of melting, needle-like crystals suddenly changed to spheres, and so for the first time ever, as we watched stationary particles melting in microgravity and observed their rather remarkable shape change,” Glicksman said.

“I said,” he added, “’There must be something more going on than just noise.’”

Previously, and still, many scientists believe that what causes pattern formation is random noise – any sound vibration or disturbances that act upon a solidifying material. Glicksman and Ankit have found a subtle internal energy source– the bias field–occurs that actually modulates the speed of the solid/liquid interface on small scales and ends up creating remarkably complex structures. That finding has been confirmed theoretically and though advanced simulation methods.

“We were fortunate to perform experiments in microgravity, where the bias field idea was initially suggested to explain the occurrence of unusual melting patterns,” Glicksman said. “Now we have a sound thermodynamic theory and proof to back that idea up.”

Glicksman and Ankit recently published their findings proving the existence of bias fields in the journal Metals (www.mdpi.com/2075-4701/7/12/547).

Because the process of solidifying metals produces branch-like internal micro-patterns that disturb the chemical homogeneity of cast materials, having a better understanding of the bias field’s role in their formation opens pathways for engineers to make improvements in cast and welded materials commonly used in everything from automobiles and airplanes to medical instruments.

“If we expect improvements in the structure of castings, weldments and other solidification processes, we’ve got to know and apply the correct physics,” Glicksman said. “This discovery potentially could lead to metallurgical process improvements.”

About Florida Institute of Technology

Celebrating 60 years of relentlessly pursuing greatness, Florida Tech was founded in 1958 at the dawn of the Space Race that would soon define the Atlantic coast of Florida and captivate the nation. Now the premier private technological university in the Southeast, Florida Tech is a Tier 1 Best National University in U.S. News & World Report and one of just nine schools in Florida lauded by the Fiske Guide to Colleges. Ranked among the top 5 percent of 18,000 degree-granting institutions worldwide in the 2018-19 World University Rankings and named one of just 14 U.S.-based Golden Age universities in 2018 by Times Higher Education, Florida Tech is one of the nation’s Best Value Colleges as determined by Forbes in 2018. Florida Tech offers bachelor’s, master’s and doctoral degrees in aeronautics and aviation, engineering, computing and cybersecurity, business, science and mathematics, psychology, education and communication. Learn more at www.fit.edu.

 


Is this email not displaying correctly? View it in your browser